

Q3 REPORT FISCAL YEAR 2016 | 2017

TABLE OF CONTENTS

EXECUTIVE SUMMARY	4
FISCAL YEAR 16/17 Q3 RESULTS	9
CRITICAL CARE	9
MOUNT SINAI HOSPITAL: MEDICAL SURGICAL ICU	9
MOUNT SINAI HOSPITAL: NEONATAL ICU	14
TORONTO GENERAL HOSPITAL: CARDIOVASCULAR ICU	15
TORONTO GENERAL HOSPITAL: MEDICAL SURGICAL ICU	19
TORONTO WESTERN HOSPITAL: MEDICAL, SURGICAL, AND NEUROSURGICAL ICU	22
EMERGENCY DEPARTMENT	25
MOUNT SINAI HOSPITAL: EMERGENCY DEPARTMENT	25
GENERAL INTERNAL MEDICINE	27
MOUNT SINAI HOSPITAL: GENERAL INTERNAL MEDICINE	27
TORONTO GENERAL HOSPITAL: GENERAL INTERNAL MEDICINE	29
TORONTO WESTERN HOSPITAL: GENERAL INTERNAL MEDICINE	31
IMMUNOCOMPROMISED HOST	33
PRINCESS MARGARET CANCER CENTRE: LEUKEMIA SERVICE	33

PRINCESS MARGARET CANCER CENTRE: ALLOGENEIC BONE MARROW TRANSPLANT 36

TORONTO GENERAL HOSPITAL: MULTI-ORGAN TRANSPLANT PROGRAM (MOTP)	39
BRIDGEPOINT HEALTH	40
BRIDGEPOINT HEALTH: HOSPITAL-WIDE	40
BEST PRACTICE GUIDELINES AND ALGORITHMS	41
RESEARCH	42
EDUCATION	43
PROVINCIAL ROLE	44
NATIONAL AND INTERNATIONAL ROLE	44
STRATEGIC PLANNING	46
APPENDIX 1: FY 16/17 Q3 TOP 5 ANTIMICROBIALS BY USAGE (DDDS PER 100 PATIE DAYS) AND EXPENDITURES BY ICU SITE	NT 47
APPENDIX 2: GENERAL INTERNAL MEDICINE FY 16/17 Q3 TOP 5 ANTIMICROBIALS B USAGE (DDDS PER 100 PATIENT DAYS) AND EXPENDITURES	Y 48

"Getting patients the right antibiotics, when they need them"

EXECUTIVE SUMMARY

The Sinai Health System-University Health Network Antimicrobial Stewardship Program (SHS-UHN ASP) was established in 2009. The SHS-UHN ASP uses a collaborative and evidence-based approach to improve the quality of antimicrobial use by getting patients the right antibiotics when they need them. The ASP follows data-driven quality improvement methodology to pursue the best possible clinical outcomes for its patients.

The SHS-UHN ASP blends research, education, and clinical care to take a leadership role in antimicrobial stewardship and improving the quality of health care.

ANTIMICROBIAL CONSUMPTION AND COSTS

The ASP works with clinical teams across both Sinai Health System (Bridgepoint Health and Mount Sinai Hospital) and University Health Network (Princess Margaret Cancer Centre, Toronto General Hospital, Toronto Rehabilitation Institute, and Toronto Western Hospital).

Where possible, we show Defined Daily Doses (DDD) together with Days of Therapy (DOT). The metrics are extracted from the hospital pharmacy databases and the Provincial Critical Care Information System (CCIS). Although these two metrics are closely related, using lower or higher doses of antimicrobials will result in a corresponding change in DDD without any change in DOT (i.e. inpatients with renal dysfunction, extremes of body mass, or central nervous system infections.)

Q3 REPORT | FISCAL YEAR 2016 | 2017

Page 4 of 48

There is a general trend of decreased antimicrobial consumption and cost in the MSH ICU and TWH ICU. Antimicrobial consumption in the TGH CVICU is decreasing, however, cost has increased primarily due to the reintroduction of micafungin prophylaxis in heart transplant patients. There is a slight increase in antimicrobial consumption in the TGH ICU, with a decrease in cost. Costs are decreasing in the MSH NICU, with an increase in usage. The MSH GIM ward is showing a decrease in consumption and cost, while there has been a rise this past quarter in TGH GIM and TWH GIM. These increases can be attributed to antifungal usage. The Leukemia service is also showing a decrease in consumption and cost, with a slight increase in the Allogeneic Bone Marrow Transplant Program (Allo-BMT) for cost. The Multi-Organ Transplant Program (MOTP) this quarter experienced an increase in consumption and cost.

Table 1: Summary of Antimicrobial Usage and Cost by Hospital/Unit

Hospital/Unit	Antimicrobial Usage	Antimicrobial Cost
Mount Sinai Hospital: Medical Surgical ICU		
Mount Sinai Hospital: Neonatal ICU		
Toronto General Hospital: Cardiovascular ICU		
Toronto General Hospital: Medical Surgical ICU		-
Toronto Western Hospital: Medical Surgical Neurosurgical ICU	+	+
Mount Sinai Hospital: General Internal Medicine	•	+
Toronto General Hospital: General Internal Medicine		
Toronto Western Hospital: General Internal Medicine		
Princess Margaret Cancer Centre: Leukemia Service	•	+
Princess Margaret Cancer Centre: Allogeneic Bone Marrow Transplant	•	
Toronto General Hospital: Multi-Organ Transplant Program		

Decrease compared to previous YTD

Increase of < 10% compared to previous YTD

Increase of > 10% compared to previous YTD

FISCAL YEAR 16/17 Q3 HIGHLIGHTS

Research – Published In This Quarter

The following articles were published or accepted for publication in peer-reviewed medical journals:

- Bai A, Showler A, Burry L, Steinberg M, Tomlinson G, Bell CM, Morris AM. Clinical prediction rules in Staphylococcus aureus bacteremia demonstrates the usefulness of reporting likelihood ratios in infectious diseases. *Eur J Clin Microbiol Infect Dis.* 2016 Sept. 35(9): 1393–1398
- <u>Letter to the Editor</u>: Bai A, Showler A, Burry L, Steinberg M, Tomlinson G, Bell CM, Morris AM.
 Letter to the Editor Clinicians should use likelihood ratios when comparing tests. *Eur J Clin Microbiol* Infect Dis (2016). doi:10.1007/s10096-016-2801-y
- Vallipuram J, Dhalla S, Bell CM, Dresser L, Han H, Husain S, Minden MD, Paul NS, So M, Steinberg M, Vallipuram M, Wong G, Morris AM. Chest CT Scans are Frequently Abnormal in Asymptomatic Patients with Newly Diagnosed Acute Myeloid Leukemia. *Leuk Lymphoma*. 2017 Jan. Vol 58 (4) 834-841
- Hughes JS, Hurford A, Finley RL, Patrick DM, Wu J, Morris AM. How to measure the impacts of antibiotic resistance and antibiotic development on empiric therapy: new composite indices. *BMJ Open* 2016;6:e012040 doi:10.1136/bmjopen-2016-01204.
- Hughes JS, Huo X, Falk L, Hurford A, Lan K, Coburn B, Morris A, Wu J. Benefits and unintended consequences of antimicrobial de-escalation: Implications for stewardship programs. *PLoS ONE* 12(2): e0171218. doi:10.1371/journal.pone. 0171218
- Sasson G, Bai AD, Showler A, Burry L, Steinberg M, Ricciuto DR, Fernandes T, Chiu A, Raybardhan S, Science M, Fernando E, Morris AM, Bell CM. Staphylococcus aureus bacteremia in immunosuppressed patients: a multicenter, retrospective cohort study. *Eur J Clin Microbiol Infect Dis.* 2017; DOI 10.1007/s10096-017-2914-y
- Bai A, Steinberg M, Showler A, Burry L, Bhatia RS, Tomlinson GA, Bell CM, Morris AM.
 Diagnostic Accuracy of Transthoracic Echocardiography For Infective Endocarditis Findings
 Using Transesophageal Echocardiography as the Reference Standard: A Meta-Analysis. J Am Soc Echocardiogr. 2017 March [in press]

<u>Op-Ed</u>

 Andrew Morris and Bill Tholl. It's time for Trudeau to join the battle against 'superbugs'. Ottawa Citizen, Sept. 20, 2016

There are currently an additional five manuscripts that have been submitted to medical journals and are undergoing peer review.

Best Practices

Several algorithms have been developed, including the **First Episode** *Clostridium Difficile* Infection (CDI) Management Algorithm, which was implemented into practice across UHN and SHS, along with electronic order sets to support the use of the algorithm. The CDI algorithm was reformatted based on clinician and project stakeholder feedback and can be found here on our ASP website. The revised formatting is based on Human Factors Engineering principles and is easier to navigate and print for frontline clinicians.

An **ASP nurse-focused initiative** aimed at reducing overtreatment of **Asymptomatic Bacteriuria**. Key deliverables of this initiative include building on the work done during the pilot project in FY15/16: refining the updated policy on urine cultures, providing audit and feedback to selected units, and educational sessions and urine culture surveys to assess nurse behaviour and sentiment practices towards urine cultures. The updated policy was approved and is currently in practice. Educational sessions with/without audit and feedback are currently underway. The results of this initiative will help to further inform us of the best strategies to support knowledge translation and reduce unnecessary urine C&S utilization and reduce asymptomatic bacteriuria and/or antibiotic usage.

Our ASP nurse-focused initiative is being led by our ASP Nurse Leader, Linda Jorgoni. This ASP Nurse Leader position is the first of its kind in Canada.

Provincial, National, and International Role

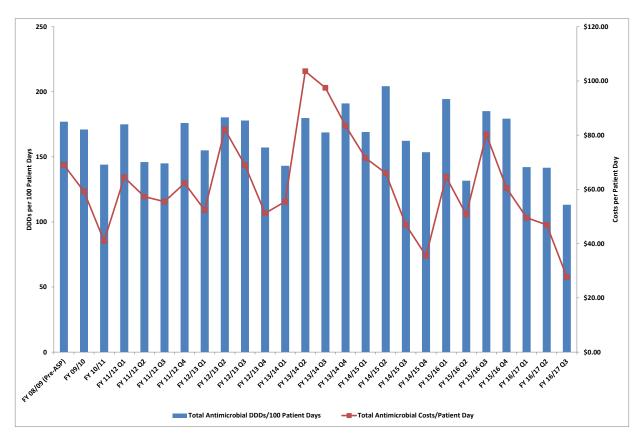
Our team has partnered with Public Health Ontario in hosting an Ontario Antimicrobial Stewardship Roundtable. This roundtable meeting included a cross-section of experts in antimicrobial stewardship, including primary care, long-term care, acute care, and perspectives from the Assistant Deputy Minister, Health Systems Quality and Funding, and Strategy and Policy Advisor and Infectious Disease Policy and Programs Sections.

As previously reported, the SHS-UHN ASP has been working closely with HealthCareCAN, the National Collaborating Centre for Infectious Diseases (NCCID), and the Public Health Agency of Canada (PHAC) to inform our national health leaders on Antimicrobial Stewardship and Resistance. Members of our ASP team led the Pan-Canadian Action Round Table with 50 experts and champions of change on antimicrobial resistance (AMR) last June. A follow-up meeting to this National Action Round Table took place in Q3 where experts in AMR and AMS (antimicrobial stewardship) reconvened. This expert group (the AMS Canada Steering Committee), which includes members Dr. Andrew Morris and Yoshiko Nakamachi, identified and committed to three "table setting" activities in AMS that support a National Action Plan on AMR. Specifically, these three activities are as follows:

- 1. Developing an evaluation protocol to assess progress in national AMS efforts.
- 2. Modeling strategies for educating the public on AMR and AMS.
- 3. Developing and promoting national guidelines on antimicrobial use for primary care practitioners treating common infections.

The SHS-UHN ASP continues to be a leader in antimicrobial stewardship and is currently working with, and providing expert guidance to, over 30 hospitals, as well as to **PSASS** (Pharmacy Students for Antimicrobial Stewardship Society) and **SASS** (Students for Antimicrobial Stewardship Society).

In Q3, we continued to partner with **Accreditation Canada** in the delivery of an **online ASP course** and a series of interactive group webinars. Our program has also partnered with CHA Learning, the professional development branch of HealthCareCAN, to develop materials for a course in change leadership in the healthcare setting.


FISCAL YEAR 16/17 Q3 RESULTS

CRITICAL CARE

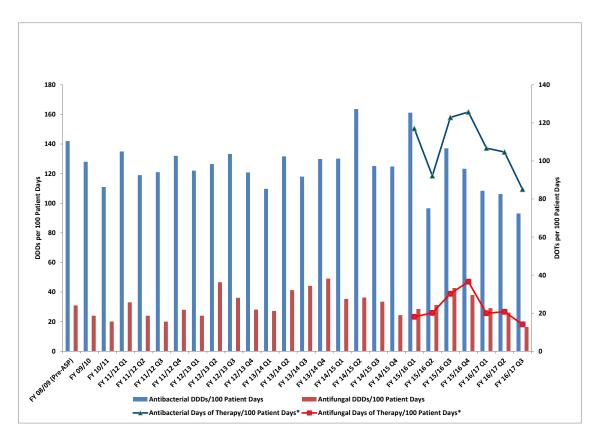
Mount Sinai Hospital: Medical Surgical ICU

The FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) decreased (↓) by 18.0% compared to YTD last year.
- o Antimicrobial costs per patient day decreased (↓) by 27.3% compared to YTD last year.
- o Antibacterial costs per patient day decreased (↓) by 41.7% compared to YTD last year.
- \circ Antifungal costs per patient day decreased (\downarrow) by 14.8% compared to YTD last year.
- NB: Patients transferred from Princess Margaret accounted for 13% of patient visits and 69% of the antimicrobial costs.

Mount Sinai Hospital: Medical Surgical ICU Antimicrobial Consumption and Costs Per Patient Day

To view Appendix 1: FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 Patient Days) and Expenditures by ICU Site, please click here.



Mount Sinai Hospital: Medical Surgical ICU Antimicrobial Consumption as Defined Daily Dose versus Antimicrobial Consumption as Days of Therapy

- Antibacterial Days of Therapy (DOT) per 100 patient days decreased (↓) by 4.9% compared to YTD last year.
- o Antifungal Days of Therapy (DOT) per 100 patient days decreased (↓) by 4.3% compared to YTD last year.

Indicators	FY 08/09 (Pre-ASP)	FY 09/10	FY 10/11	FY 11/12	FY 12/13	FY 13/14	FY 14/15	FY 15/16		FY16	/17 Performar	ice		YTD of Previous Year
	(FIE-ASF)								Q1	Q2	Q3	Q4	YTD	Previous rear
Antimicrobial Usage and Costs														
Total Antimicrobial DDDs/100 Patient Days	177	171	144	167	170	172	164	156	142	142	113		133	171
Systemic Antibacterial DDDs/100 Patient Days	142	128	111	128	127	123	136	116	108	106	93		103	131
Systemic Antifungal DDDs/100 Patient Days	31	24	20	33	35	41	25	32	29	26	16		24	35
Total Antimicrobial Costs	\$332,724	\$285,975	\$193,129	\$279,859	\$291,470	\$424,044	\$232,814	\$274,258	\$59,907	\$53,895	\$30,330		\$144,132	\$216,223
Total Antimicrobial Costs/Patient Day	\$69.01	\$59.23	\$40.95	\$59.22	\$62.37	\$85.36	\$62.54	\$61.45	\$49.55	\$46.91	\$27.70		\$41.74	\$66.02
Systemic Antibacterial Costs	\$174,339	\$142,134	\$95,773	\$125,339	\$134,811	\$108,886	\$92,928	\$68,246	\$15,318	\$14,278	\$12,000		\$41,597	\$62,673
Systemic Antibacterial Costs/Patient Day	\$36.16	\$29.44	\$20.31	\$26.94	\$28.85	\$21.92	\$20.71	\$15.29	\$12.67	\$12.43	\$10.96		\$12.05	\$19.14
Systemic Antifungal Costs	\$143,100	\$132,519	\$88,998	\$141,877	\$144,811	\$296,573	\$134,504	\$189,661	\$42,494	\$35,494	\$16,636		\$94,624	\$141,561
Systemic Antifungal Costs/Patient Day	\$29.68	\$27.45	\$18.87	\$30.50	\$30.99	\$59.70	\$40.53	\$42.50	\$35.15	\$30.89	\$15.19		\$27.40	\$43.22
Antibacterial Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	n/a	111	109	115	107	105	85		99	111
Antifungal Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	n/a	17	21	27	20	21	14		18	23
Patient Care Outcomes														
Hospital-Acquired C. difficile Cases (rate per 1,000 pt days)	NA	NA	NA	5 (1.07)	8 (1.71)	4 (0.91)	7 (1.59)	5 (1.12)	0 (0.00)	0 (0.00)	0 (0.00)		0 (0.00)	4 (1.22)
ICU Average Length of Stay (Days)	5.84	5.57	5.67	5.51	5.24	6.10	5.26	4.45	4.18	4.33	4.05		4.18	4.34
ICU Mortality Rate (as a %)	20.1	17.6	16.3	16.5	17.04	15.3	13.9	14.2	9.5	12.7	14.6		12.3	14.6
ICU Readmission Rate Within 48 Hrs (as a %)	3.2	2.9	2.7	2.7	1.86	3.2	2.6	2.1	3.2	0.0	2.6		3.7	2.7
ICU Ventilator Days	NA	3286	2934	2677	2749	3069	2597	2504	552	616	427		1595	1810
ICU Multiple Organ Dysfunction Score (MODS)	4.00	4.04	4.12	4.25	4.62	4.87	4.73	4.43	3.6	3.95	3.86		3.80	4.37

Table 2: Mount Sinai Hospital: Medical Surgical ICU

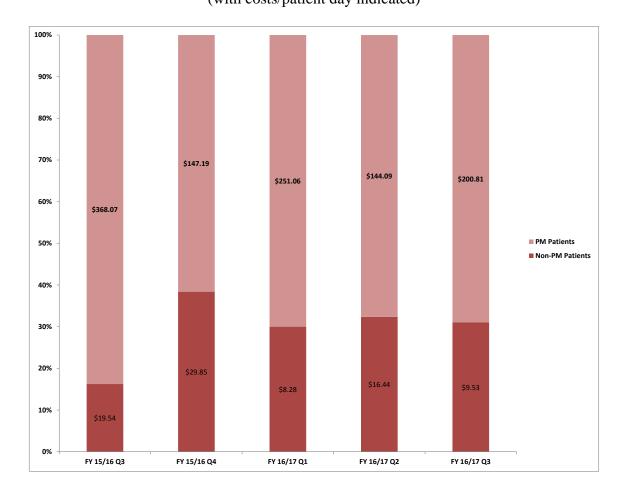
Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs + systemic antivirals; non-systemic antimicrobials are excluded. Data Sources: Antimicrobial DDD and Costs (PharmNet), C difficile (Infection Control Dashboards), Other ICU Patient Care Indicators (Critical Care Information System).

Historical antimicrobial usage and cost data updated due to the discovery that selected added drug dosages (Fluconazole 400mg/200ml bag, Pip-Tazo 13.5gm vial, Daptomycin 500mg vial) were not included in the report. Data have been revised to include Fluconazole starting August 2013, Pip-Tazo January 2015, and Daptomycin, November 2015.

Table 3: Mount Sinai Hospital: Medical Surgical ICU Total Antimicrobial Costs

	MSH ICU Total Antimicrobial Costs (Antimicrobial Cost per Patient Day)											
	FY 10/11	FY 11/12	FY 12/13	FY 13/14	FY 14/15	FY 15/16	FY 16/17 Q1	FY 16/17 Q2	FY 16/17 Q3	FY 16/17 Q4	FY 16/17 YTD	Previous YTD
Non-PM Patients	\$78,737	\$87,931	\$109,283	\$150,870	\$135,395	\$71,509	\$17,979	\$17,441	\$9,446		\$35,420	\$50,544
Non-Fivi Fallenis	(\$21.14)	(\$25.42)	(\$31.77)	(\$37.54)	(\$37.70)	(\$23.5)	(\$8.28)	(\$16.44)	(\$9.53)		(\$10.96)	(\$20.49)
PM Patients	\$114,392	\$191,928	\$182,188	\$273,174	\$97,419	\$202,749	\$41,928	\$36,454	\$20,884		\$99,266	\$165,679
r w r auents	(\$179.02)	(\$181.58)	(\$249.91)	(\$317.64)	(\$135.68)	(\$218.05)	(251.06)	(\$144.09)	(\$200.81)		(\$186.62)	(\$281.95)
Total	\$193,129	\$279,859	\$291,470	\$424,044	\$232,814	\$274,258	\$59,907	\$53,895	\$30,330		\$144,132	\$219,222
i Otal	(\$44.26)	(\$61.97)	(\$69.91)	(\$87.40)	(\$52.46)	(\$67.17)	(25.62)	(\$41.02)	(\$27.70)		(31.16)	(\$70.48)

Note: 15/16 is open year data; totals and cost per day may change based on coding changes. Antimicrobial costs from PharmNet; ICU visits and patient days from CIHI DAD Database.


Historical antimicrobial usage and cost data updated due to the discovery that selected added drug dosages (Fluconazole 400mg/200ml bag, Pip-Tazo 13.5gm vial, Daptomycin 500mg vial) were not included in the report. Data have been revised to include Fluconazole starting August 2013, Pip-Tazo January 2015, and Daptomycin, November 2015.

Mount Sinai Hospital: Medical Surgical ICU Proportional Antimicrobial Costs for PM and Non-PM Patients (with costs/patient day indicated)

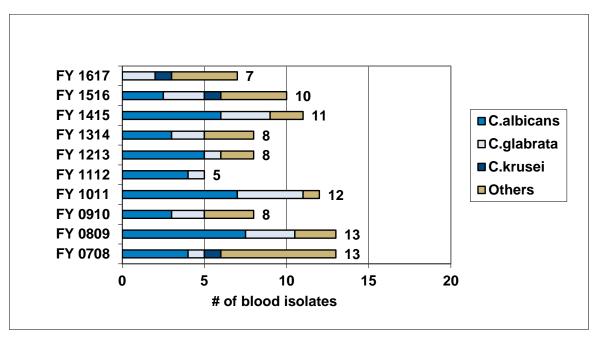
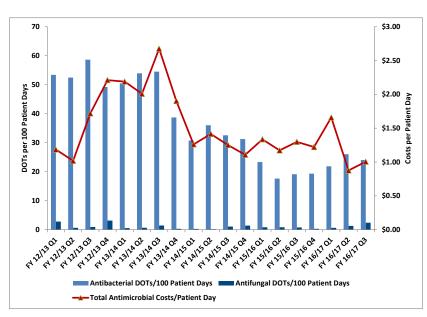


Table 4: Yeast Species Isolated in Blood – Mount Sinai Hospital: MedicalSurgical ICU



Mount Sinai Hospital: Neonatal ICU

Currently there are no active ASP rounds in the NICU, however, we have continued to collect days of therapy (DOT), which is considered to be the standard metric for antimicrobial consumption for neonates. The FY 16/17 Q3 summary includes:

- o Antimicrobial days of therapy (DOT) per 100 patient days increased (↑) by 19.3% compared to YTD last year.
- \circ Antimicrobial costs per patient day decreased (\downarrow) by 6.4% compared to YTD last year.

Mount Sinai Hospital: Neonatal ICU Antimicrobial Consumption and Costs Per Patient Day

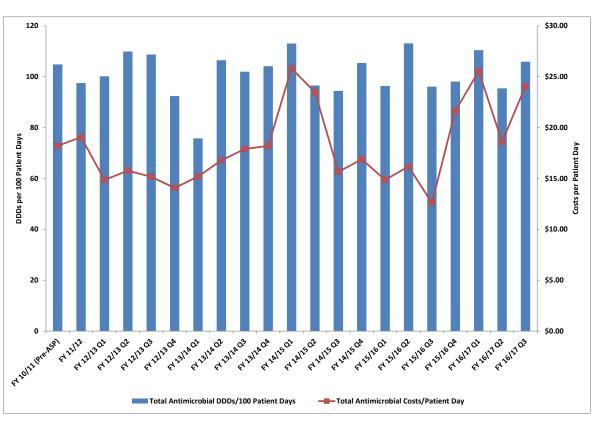
Table 5: Mount Sinai Hospital: Neonatal ICU

				FY 14/15	FY 15/16		YTD of				
Indicators	FY 11/12	FY 12/13	FY 13/14			Q1	Q2	Q3	Q4	YTD	Previous Year
Antimicrobial Usage and Costs											
Total Antimicrobial DOTs/100 Patient Days	67.3	55.4	49.4	33.5	20.6	22.5	27.3	26.4		25.5	20.9
Systemic Antibacterial DOTs/100 Patient Days	65.1	53.5	48.7	32.7	19.9	21.9	26.0	24.0		24.0	20.1
Systemic Antifungal DOTs/100 Patient Days	2.2	1.8	0.7	0.8	0.7	0.6	1.3	2.4		1.5	0.8
Total Antimicrobial Costs	\$16,415	\$17,682	\$26,162	\$21,371	\$21,232	\$7,022	\$3,870	\$4,328		\$15,220	\$16,211
Total Antimicrobial Costs/Patient Day	\$1.31	\$1.51	\$2.17	\$1.26	\$1.26	\$1.66	\$0.88	\$1.01		\$1.17	\$1.27
Systemic Antibacterial Costs	\$14,783	\$16,505	\$25,290	\$20,516	\$20,804	\$6,810	\$3,719	\$4,065		\$14,594	\$15,792
Systemic Antibacterial Costs/Patient Day	\$1.18	\$1.41	\$2.10	\$1.21	\$1.23	\$1.61	\$0.84	\$0.94		\$1.13	\$1.24
Systemic Antifungal Costs	\$1,632	\$1,177	\$872	\$855	\$428	\$212	\$151	\$263		\$626	\$419
Systemic Antifungal Costs/Patient Day	\$0.13	\$0.10	\$0.07	\$0.05	\$0.03	\$0.050	\$0.03	\$0.06		\$0.05	\$0.03

Notes: Effective January 15, 2014, the NICU changed to a mixed-acuity model of care. Prior to this, ASP reported level 3 pharmacy data only. As of January 15, pharmacy data includes both level 2 and level 3 usage and cost. Patient days include both level 2 and 3 days; January level 2 days were determined by dividing the total days for the month by 2, since the change occurred midway through the month.

Days of Therapy (DOT) was used as the metric for antimicrobial consumption, which is considered to be the standard for neonates.

Page 14 of 48



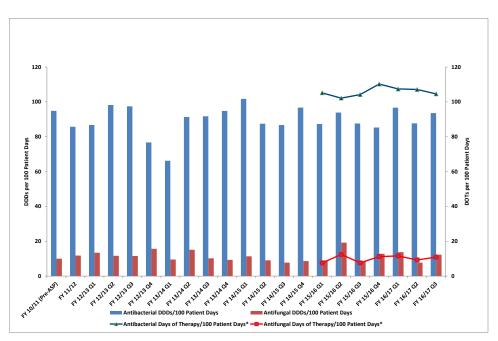
Toronto General Hospital: Cardiovascular ICU

The FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) decreased (↓) by 0.8% compared to YTD last year.
- Antimicrobial costs per patient day increased (↑) by 46.9% compared to YTD last year.
- Antibacterial costs per patient day increased (↑) by 10.0% compared to YTD last year.
- Antifungal costs per patient day increased ([†]) by 270.2% compared to YTD last year.
 NB: micafungin prophylaxis in heart transplant patients had stopped in October 2015 and was then reinstated in March of 2016.

Toronto General Hospital: Cardiovascular ICU Antimicrobial Consumption and Costs Per Patient Day

Q3 REPORT | FISCAL YEAR 2016 | 2017



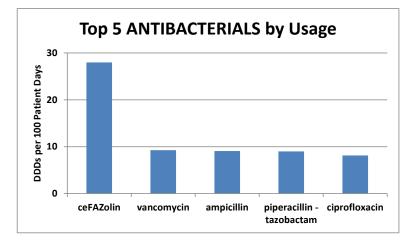
Toronto General Hospital: Cardiovascular ICU Antimicrobial Consumption as Defined Daily Dose Versus Antimicrobial Consumption as Days of Therapy

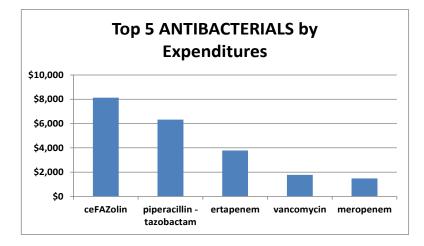
- o Antibacterial Days of Therapy (DOT) per 100 patient days increased (↑) by 2.6% compared to YTD last year.
- o Antifungal Days of Therapy (DOT) per 100 patient days increased (↑) by 5.7% compared to YTD last year.

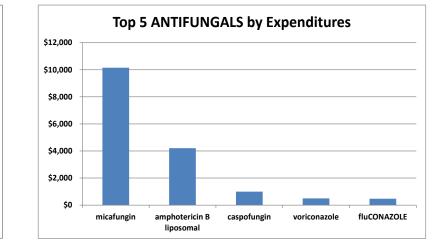
Table 6: Toronto General Hospital: Cardiovascular ICU

Indicators	FY 10/11 (Pre-ASP)	FY 11/12	FY 12/13	FY 13/14	FY 14/15	FY 15/16		FY	16/17 Perfor	mance		YTD of Previous
	(Q1	Q2	Q3	Q4	YTD	Year
Antimicrobial Usage and Costs								•				
Total Antimicrobial DDDs/100 Patient Days	105	98	102	97	102	101	110	95	106		104	102
Systemic Antibacterial DDDs/100 Patient Days	95	86	89	86	93	89	97	88	94		93	90
Systemic Antifungal DDDs/100 Patient Days	10	12	13	11	9	13	14	8	12		11	12
Total Antimicrobial Costs	\$108,172	\$108,464	\$85,916	\$100,736	\$129,314	\$110,716	\$44,457	\$30,843	\$42,085		\$117,385	\$74,611
Total Antimicrobial Costs/Patient Day	\$18.20	\$19.06	\$14.99	\$17.00	\$20.46	\$16.34	\$25.54	\$18.59	\$24.06		\$22.80	\$14.62
Systemic Antibacterial Costs	\$100,375	\$99,261	\$74,232	\$80,204	\$91,366	\$85,343	\$28,103	\$21,865	\$25,485		\$75,453	\$64,875
Systemic Antibacterial Costs/Patient Day	\$16.89	\$17.44	\$12.95	\$13.54	\$14.45	\$12.60	\$16.14	\$13.18	\$14.57		\$14.65	\$12.71
Systemic Antifungal Costs	\$7,797	\$9,204	\$11,684	\$20,532	\$37,948	\$25,373	\$16,354	\$8,977	\$16,600		\$41,932	\$9,736
Systemic Antifungal Costs/Patient Day	\$1.31	\$1.62	\$2.04	\$3.47	\$6.00	\$3.75	\$9.39	\$5.41	\$9.49		\$8.14	\$1.91
Antibacterial Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	129	105	107	107	105		106	104
Antifungal Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	28	10	12	9	11		11	9
Patient Care Outcomes												
Hospital-Acquired C. difficile Cases (rate per 1,000 pt days)	2 (0.34)	5 (0.88)	6 (1.05)	7 (1.18)	7 (1.11)	7 (1.03)	1 (0.57)	2 (1.21)	2 (1.14)		5 (0.97)	5 (0.98)
ICU Average Length of Stay (days)	3.12	2.95	2.97	3.20	3.46	3.45	3.13	3.39	4.26		3.57	3.5
ICU Mortality Rate (as a %)	3.5	3.0	3.0	4.6	4.6	4.0	4.6	4.2	3.46		4.1	4.2
ICU Readmission Rate Within 48 Hrs (as a %)	1.6	2.2	1.8	2.2	2.4	1.6	1.9	1.8	1.9		1.9	1.4
Central Line Infection Rate (per 1000 pt days)	0.73	0.17	0.34	0.16	0.15	0.53	0.0	1.66	1.13		0.93	0.58
Ventilator-Associated Pneumonia Rate (per 1,000 pt days)	2.99	2.80	1.91	1.73	2.81	0.94	1.89	3.55	6.19		3.876	0.64
ICU Multiple Organ Dysfunction Score (MODS)	6.22	6.07	5.51	5.77	5.60	5.83	6.15	5.83	6.03		6.00	5.81
ICU Ventilator Days	3015	3571	3676	4049	3925	4239	1056	1803	969		3828	3178

Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs; non-systemic antimicrobials and antivirals are excluded. Data Sources: Antimicrobial DDD and Costs (Centricity). *An error in DDD calculation for Pip-tazo was detected in Q3 2013; all historical data prior to this was rerun, resulting in minor changes to antibacterial DDDs.


Page 16 of 48





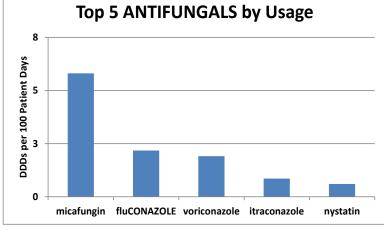


Table 7: TGH CVICU FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 patient days) and Expenditures

Q3 REPORT | FISCAL YEAR 2016 | 2017 P

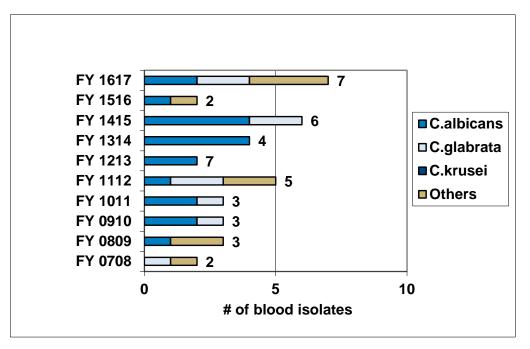
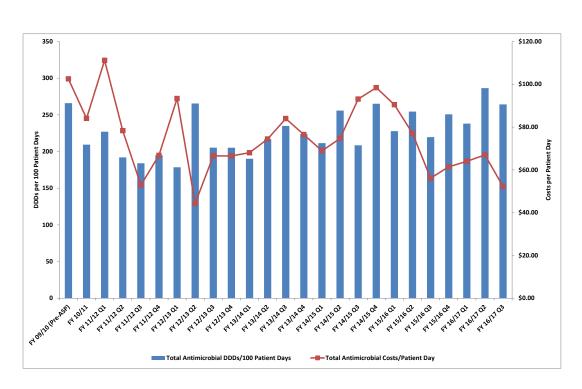

Page 17 of 48

Table 8: Yeast Species Isolated in Blood – Toronto General HospitalCardiovascular ICU

Q3 REPORT | FISCAL YEAR 2016 | 2017



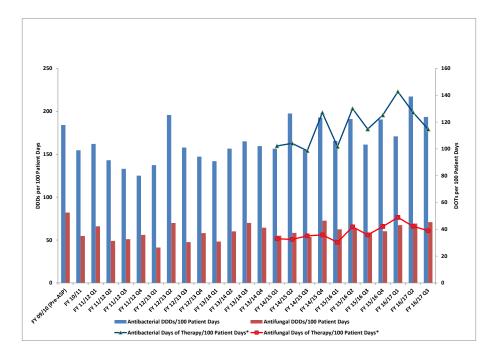
Toronto General Hospital: Medical Surgical ICU

FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) increased ([†]) by 8.4% compared to YTD last year.
- Antimicrobial costs per patient day decreased (\downarrow) by 26.2% compared to YTD last year.
- o Antibacterial costs per patient day decreased (↓) by 10.1% compared to YTD last year.
- Antifungal costs per patient day decreased (\downarrow) by 37.8% compared to YTD last year.

Toronto General Hospital: Medical Surgical ICU Antimicrobial Consumption and Costs Per Patient Day

To view Appendix 1: FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 Patient Days) and Expenditures by ICU Site, please click here.



Toronto General Hospital: Medical Surgical ICU Antimicrobial Consumption as Defined Daily Dose Versus Antimicrobial Consumption as Days of Therapy

- o Antibacterial Days of Therapy (DOT) per 100 patient days increased (↑) by 10.8% compared to YTD last year.
- o Antifungal Days of Therapy (DOT) per 100 patient days increased (↑) by 20.2% compared to YTD last year.

Table 9: Toronto General Hospital: Medical Surgical ICU

	FY 09/10 (Pre-	FY 10/11	FY 11/12	FY 12/13					FY 1	16/17 Perforr	nance		YTD of
Indicators	ASP)		FT 11/12	FT 12/13	FY 13/14	FY 14/15	FY 15/16	Q1	Q2	Q3	Q4	YTD	Previous Year
Antimicrobial Usage and Costs													
Total Antimicrobial DDDs/100 Patient Days	266	209	199	213	217	235	239	238	286	264		262	235
Systemic Antibacterial DDDs/100 Patient Days	184	155	143	159	156	175	178	171	217	193		193	173
Systemic Antifungal DDDs/100 Patient Days	82	55	55	54	61	60	84	67	69	71		69	61
Total Antimicrobial Costs	\$701,451	\$629,472	\$567,532	\$473,613	\$584,018	\$686,577	\$587,950	\$155,901	\$148,810	\$101,125		\$405,836	\$457,312
Total Antimicrobial Costs/Patient Day	\$102.52	\$84.06	\$76.93	\$63.75	\$75.71	\$83.65	\$71.06	\$64.00	\$67.00	\$52.21		\$61.55	\$74.40
Systemic Antibacterial Costs	\$390,209	\$375,436	\$292,355	\$231,171	\$225,557	\$293,126	\$254,392	\$78,696	\$75,922	\$52,335		\$206,953	\$191,562
Systemic Antibacterial Costs/Patient Day	\$57.03	\$50.14	\$39.63	\$31.12	\$29.24	\$35.71	\$30.75	\$32.31	\$34.18	\$27.02		\$31.39	\$31.16
Systemic Antifungal Costs	\$311,242	\$254,036	\$275,176	\$242,443	\$358,461	\$393,451	\$333,559	\$77,205	\$72,888	\$48,790		\$198,883	\$265,750
Systemic Antifungal Costs/Patient Day	\$45.49	\$33.93	\$37.30	\$32.63	\$46.47	\$47.94	\$40.31	\$31.69	\$32.82	\$25.19		\$30.16	\$43.23
Antibacterial Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	n/a	107.9	118.3	143	127	115		129	116
Antifungal Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	n/a	34.1	37.7	49	42	39		44	36
Patient Care Outcomes													
Hospital-Acquired C. difficile Cases (rate per 1,000 pt days)	10 (1.46)	10 (1.33)	11 (1.49)	11 (1.48)	12 (1.56)	10 (1.22)	10 (1.21)	3 (1.23)	7 (3.15)	1 (0.52)		11 (1.67)	8 (1.3)
ICU Average Length of Stay (days)	8.24	8.61	8.85	7.79	8.22	8.08	7.62	8.77	9.68	6.2		8.08	7.55
ICU Mortality Rate (as a %)	16.2	15.7	16.3	16.0	17.8	17.2	17.2	16.4	17.4	15.5		16.4	18.3
ICU Readmission Rate Within 48 Hrs (as a %)	3.8	4.4	4.4	2.8	3.5	3.0	3.4	2.7	5.4	0.91		3.0	2.9
ICU Ventilator Days	5399	6256	6507	6458	24620	7330	7048	2161	2319	1486		5966	5299
Apache II Score	n/a	n/a	16.1	15.775	15.9	15.1	15.4	16.5	16.4	16.6		16.5	15.5

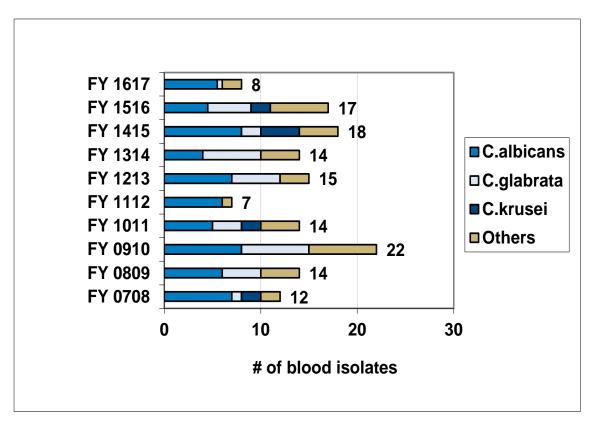
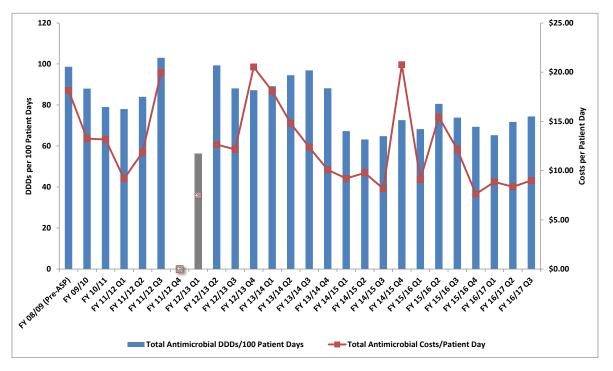

Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs; non-systemic antimicrobials and antivirals are excluded. Data Sources: Antimicrobial DDD and Costs (Centricity). *An error in DDD calculation for Pip-tazo was detected in Q3 2013; all historical data prior to this was rerun, resulting in minor changes to antibacterial DDDs.

Table 10: Yeast Species Isolated in Blood – Toronto General Hospital: MedicalSurgical ICU



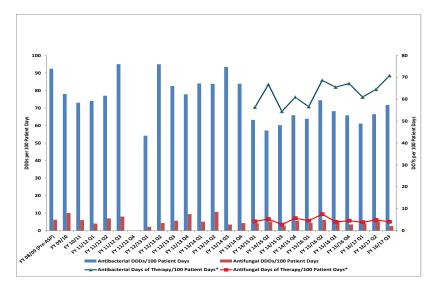
Toronto Western Hospital: Medical, Surgical, and Neurosurgical ICU

The FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) decreased (↓) by 5.5% compared to YTD last year.
- o Antimicrobial costs per patient day decreased (↓) by 29.6% compared to YTD last year.
- \circ Antibacterial costs per patient day decreased (1) by 19.6% compared to YTD last year.
- Antifungal costs per patient day decreased (\downarrow) by 42.6% compared to YTD last year.

Due to an error in the Centricity Pharmacy database, we are not able to provide accurate DDD data and utilization cost for the Toronto Western Hospital ICU for FY 11/12 Q4. This also affected the recovery in FY 12/13 Q1 so neither quarter is reflected in the above graph.

To view Appendix 1: FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 Patient Days) and Expenditures by ICU Site, please click here.



Toronto Western Hospital: Medical, Surgical, Neurosurgical ICU Antimicrobial Consumption as Defined Daily Dose Versus Antimicrobial Consumption as Days of Therapy

- o Antibacterial Days of Therapy (DOT) per 100 patient days increased (↑) by 3.9% compared to YTD last year.
- o Antifungal Days of Therapy (DOT) per 100 patient days decreased (↓) by 30.5% compared to YTD last year.

Due to an error in the Centricity Pharmacy database, we are not able to provide accurate DDD data and utilization cost for the Toronto Western Hospital ICU for FY 11/12 Q4.

Table 11: Toronto Western Hospital: Medical, Surgical, and Neurosurgical ICU

Indicators	FY 08/09 (Pre-ASP)	FY 09/10	FY 10/11	FY 11/12	FY 12/13	FY 13/14	FY 14/15	FY 15/16	FY16/17 Performance			nance	YTD of Previous Year	
									Q1	Q2	Q3	Q4	YTD	
Antimicrobial Usage and Costs														
Total Antimicrobial DDDs/100 Patient Days	99	88	79	83	83	92	67	77	65	72	74		71	74
Systemic Antibacterial DDDs/100 Patient Days	92	78	73	77	78	86	62	68	61	66	72		66	69
Systemic Antifungal DDDs/100 Patient Days	6	10	6	6	5	6	5	9	4	5	3		4	5
Total Antimicrobial Costs	\$136,758	\$100,408	\$101,191	\$105,899	\$102,978	\$120,538	\$138,014	\$127,293	\$25,988	\$24,792	\$27,159		\$77,939	\$104,593
Total Antimicrobial Costs/Patient Day	\$18.16	\$13.24	\$13.17	\$13.60	\$13.37	\$13.49	\$11.97	\$11.10	\$8.85	\$8.36	\$9.00		\$8.74	\$12.32
Systemic Antibacterial Costs	\$123,314	\$87,445	\$79,280	\$89,784	\$70,099	\$85,916	\$89,382	\$74,877	\$14,840	\$18,598	\$17,093		\$50,531	\$57,918
Systemic Antibacterial Costs/Patient Day	\$16.37	\$11.53	\$10.32	\$11.53	\$9.10	\$9.61	\$7.75	\$6.53	\$5.05	\$6.27	\$5.66		\$5.67	\$6.82
Systemic Antifungal Costs	\$13,444	\$12,963	\$21,911	\$16,115	\$32,879	\$34,623	\$48,631	\$52,416	\$11,148	\$6,194	\$10,066		\$27,408	\$46,675
Systemic Antifungal Costs/Patient Day	\$1.79	\$1.71	\$2.85	\$2.07	\$4.27	\$3.87	\$4.22	\$4.57	\$3.80	\$2.09	\$3.34		\$3.07	\$5.50
Antibacterial Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	n/a	n/a	60	65	61	64	71		65	64
Antifungal Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	n/a	n/a	4	5	4	5	4		4	5
Patient Care Outcomes														
Hospital-Acquired C. difficile Cases (rate per 1,000 pt days)	6 (0.79)	9 (1.18)	4 (0.52)	13 (1.66)	5 (0.65)	12 (1.34)	10 (1.16)	9 (0.78)	1 (0.34)	3 (1.01)	2 (0.66)		6 (0.67)	7 (0.82)
ICU Average Length of Stay (days)	8.39	7.44	10.68	9.71	7.98	7.68	8.7	8.01	10.88	7.4	8.2		8.8	7.2
ICU Mortality Rate (as a %)	19.6	19.9	18.1	17.0	16.4	17.1	19.0	17.9	19.2	15.3	16.0		16.8	17.8
ICU Readmission Rate Within 48 Hrs (as a %)	3.9	4.7	4.9	3.21	3.00	3.85	3.40	2.54	1.23	1.09	0		0.77	2.45
ICU Ventilator Days	4617	6305	5960	5578	4947	5523	5180	5414	1371	1010	1389		3770	4005
ICU Apache II Score	15.0	14.7	13.7	13.8	12.9	12.8	13.2	13.0	13.6	12.9	13.8		13.4	12.9

Notes: Q4 13/14 data consists of MSNICU patients (including eight ICU II patients).

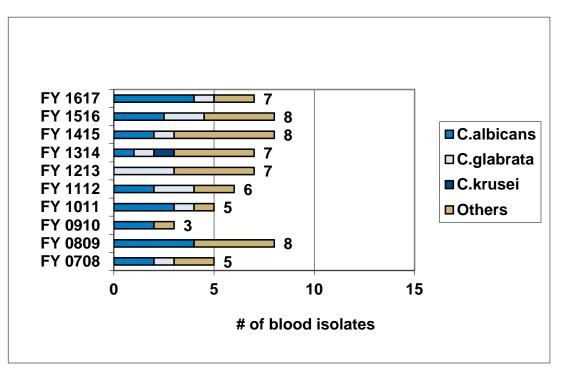

Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs; non-systemic antimicrobials and antivirals are excluded. Data Sources: Antimicrobial DDD and Costs (Centricity) *An error in DDD calculation for Pip-tazo was detected in Q3 2013; all historical data prior to this was rerun, resulting in minor changes to antibacterial DDDs.

Table 12: Yeast Species Isolated in Blood – Toronto Western Hospital: Medical,
Surgical, and Neurosurgical ICU

Page 24 of 48

EMERGENCY DEPARTMENT

Mount Sinai Hospital: Emergency Department

The FY 16/17 Q3 summary includes:

Sepsis Project

SNAP (Sepsis Now A Priority) Project: The SNAP algorithm continues to be utilized in the Mount Sinai Hospital Emergency Department. Algorithm-related interventional times continue to be monitored and reported back to frontline staff via monthly SNAP scorecards. Reporting of the SNAP scorecard is being managed by the Emergency Department. There have been recent discussions with the MSH ED staff to determine how best to continue improving care and increasing awareness and use of the SNAP algorithm.

SNAP SCORE CARD

For the Month of October 2016

5-35 minutes	5 - 35 minutes	5-35minutes	5-35minutes	5-35 minutes	35-65minutes
36-40 minutes	36-40 minutes	36-40minutes	36-40minutes	36-40minutes	66-70minutes
> 40 minutes	>40mintues	>40minutes	>40minutes	>40minutes	>70minutes
Time to MD Assessment	Time to RN Assessment	Time to Blood Culture	Time to Lactate	<u>Time to 1st Bolus</u>	Time to Antibiotic
0:30	0:00	0:06	0:06	0:00	n/a
0:14	0:00	0:00	0:06	0:05	0:15
0:51	0:00	0:00	0:00	0:07	n/a
0:30	0:00	0:06	0:06	0:05	0:42
0:00	0:00	7:52	n/a	0:02	7:47
0:00	0:00	0:58	0:00	0:00	4:41
1:25	0:50	2:28	0:00	0:00	1:55
0:00	3:00	0:00	0:00	0:00	0:00
0:00	0:00	0:08	0:08	1:00	1:31
0:00	0:00	0:29	0:29	1:10	3:43
0:00	0:00	14:18	n/a	0:52	3:59
0:17	0:12	0:24	0:26	0:00	0:52
0:05	0:00	0:00	0:00	0:00	1:05
1:21	0:00	0:06	0:06	n/a	4:14
0:16	0:00	0:36	0:36	0:16	1:03
0:00	0:00	0:45	1:00	0:18	2:35
1:15	0:15	0:00	0:00	2:40	1:40
0:05	0:10	0:25	0:25	0:20	3:05
0:17	0:43	0:00	0:00	0:00	3:30

TOTAL NUMBER OF CASES	19
TOTAL NUMBER OF CASES CANCELLED	1
TOTAL PATIENTS DISCHARGED FROM ED	6
TOTAL PATIENTS TRANSFERRED TO FLOOR	13

Note: 0:00 time means that pertinent assessments or interventions were started before SNAP algorithm was assigned.

SNAP SCORE CARD

For the Month of November 2016

5-35 minutes	5 - 35 minutes	5-35minutes	5-35minutes	5-35 minutes	35-65minutes	
36-40 minutes	36-40 minutes	36-40minutes	36-40minutes	36-40minutes	66-70minutes	
> 40 minutes	>40mintues	>40minutes	>40minutes	>40minutes	>70minutes	
						_
Time to MD Assessment	Time to RN Assessment	Time to Blood Culture	Time to Lactate	Time to 1st Bolus	Time to Antibiotic	
0:25	0:38	1:07	1:07	1:05	3:47	
0:00	0:00	0:20	0:20	0:10	1:17	
0:45	0:05	0:23	0:23	0:21	n/a	no antibiotics provided
0:05	0:00	0:13	0:13	0:20	2:29	
0:12	0:14	n/a	0:34	0:40	n/a	SNAP entered in error?
0:20	0:00	0:00	0:00	0:22	n/a	no antibiotic given
0:00	0:00	0:15	0:15	0:27	0:50	
0:05	0:03	0:27	n/a	0:57	0:55	no lactate resulted
0:45	0:00	0:08	0:08	0:00	n/a	no antibiotic provided
0:00	0:00	0:00	0:00	2:03	5:20	
1:59	1:52	0:00	0:00	0:00	n/a	no antibiotic provided

TOTAL NUMBER OF CASES CANCELLED TOTAL PATIENTS DISCHARGED FROM ED TOTAL PATIENTS TRANSFERRED TO FLOOR	TOTAL NUMBER OF CASES
	TOTAL NUMBER OF CASES CANCELLED
TOTAL PATIENTS TRANSFERRED TO FLOOR	TOTAL PATIENTS DISCHARGED FROM ED
	TOTAL PATIENTS TRANSFERRED TO FLOOR

Note: 0:00 time means that pertinent assessments or interventions were started before SNAP algorithm was assigned.

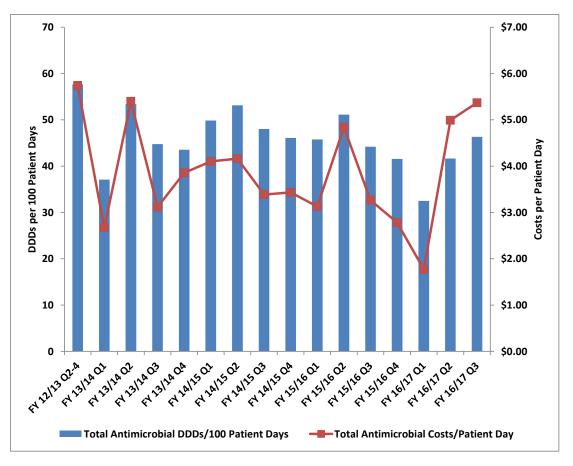
SNAP SCORE CARD

For the Month of December 2016

5-35 minutes	5-35 minutes 5 - 35 minutes		5-35minutes	5-35 minutes	35-65minutes	
36-40 minutes	36-40 minutes	36-40minutes	36-40minutes	36-40minutes	66-70minutes	
> 40 minutes	>40mintues	>40minutes	>40minutes	>40minutes	>70minutes	
Time to MD Assessment	Time to RN Assessment	Time to Blood Culture	Time to Lactate	Time to 1st Bolus	Time to Antibiotic	
0:32	0:17	0:13	0:12	0:00	1:25	
0:00	0:00	0:02	0:05	0:05	0:33	
1:17	0:32	0:00	0:00	n/a	n/a	
0:20	0:30	0:25	0:34	n/a	n/a	
0:52	0:00	0:34	0:28	0:20	0:57	
0:59	0:14	0:08	0:08	0:00	1:40	
0:00	0:00	0:47	1:25	2:30	1:00	
0:03	0:04	0:00	0:00	0:15	0:56	
0:03	0:00	0:28	0:28	0:10	0:23	
1:02	0:00	0:20	0:20	0:15	3:53	
0:41	0:11	0:06	0:06	0:05	n/a	
0:00	0:00	1:31	0:00	1:05	1:12	
0:36	1:05	0:00	0:00	0:06	3:29	
0:06	0:36	0:15	0:15	0:10	0:55	

TOTAL NUMBER OF CASES	14
TOTAL NUMBER OF CASES CANCELLED	0
TOTAL PATIENTS DISCHARGED FROM ED	3
TOTAL PATIENTS TRANSFERRED TO FLOOR	11

 $Note: 0:00\ time\ means\ that\ pertinent\ assessments\ or\ interventions\ were\ started\ before\ SNAP\ algorithm\ was\ assigned.$


GENERAL INTERNAL MEDICINE

Mount Sinai Hospital: General Internal Medicine

The FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) decreased (↓) by 17.5% compared to YTD last year.
- Antimicrobial costs per patient day decreased (\downarrow) by 0.2% compared to YTD last year.
- o Antibacterial costs per patient day decreased (↓) by 35.5% compared to YTD last year.
- Antifungal costs per patient day increased ([↑]) by 278.8% compared to YTD last year.
 NB: Usage data calculated for patients admitted by admission to GIM medical service at MSH.
 In October, there was significant use of Amphotericin B liposomal in one patient.

Mount Sinai Hospital: General Internal Medicine Antimicrobial Consumption and Costs Per Patient Day

To view Appendix 2: General Internal Medicine FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 patient days) and Expenditures, please click here.

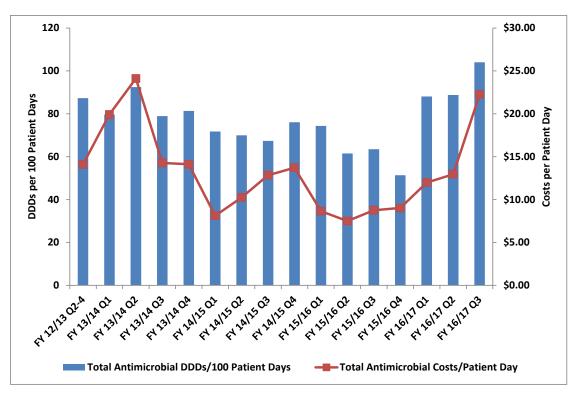
Table 13: Mount Sinai Hospital: General Internal Medicine

Indicators	FY 12/13 (Q2-4)	FY 13/14	FY 14/15	FY 15/16	Q1	Q2	FY16/17 Performand Q3	ce Q4	YTD	YTD of Previous Year
Antimicrobial Usage and Costs										
Total Antimicrobial DDDs/100 Patient Days	58	45	48	43	33	42	46		40	47
Systemic Antibacterial DDDs/100 Patient Days	53	41	43	39	29	36	42		36	43
Systemic Antifungal DDDs/100 Patient Days	3	3	3	3	3	5	3		4	4
Total Antimicrobial Costs	\$125,012	\$123,737	\$128,661	\$106,518	\$15,988	\$39,950	\$43,635		\$99,573	\$101,744
Total Antimicrobial Costs/Patient Day	\$5.74	\$3.76	\$3.63	\$2.92	\$1.77	\$4.99	\$5.37		\$3.96	\$3.73
Systemic Antibacterial Costs	\$105,621	\$99,731	\$104,822	\$84,173	\$13,286	\$19,255	\$22,149		\$54,690	\$82,733
Systemic Antibacterial Costs/Patient Day	\$4.85	\$3.03	\$2.96	\$2.31	\$1.47	\$2.41	\$2.73		\$2.17	\$3.03
Systemic Antifungal Costs	\$15,422	\$20,153	\$16,352	\$15,983	\$2,353	\$20,028	\$18,406		\$40,787	\$16,026
Systemic Antifungal Costs/Patient Day	\$0.71	\$0.61	\$0.46	\$0.44	\$0.26	\$2.50	\$2.26		\$1.62	\$0.59
Patient Care Outcomes					-		-			
Hospital-Acquired C. difficile Cases (rate per 1,000 patient days)	16 (0.64)	8 (0.32)	7 (0.27)	7 (0.28)	0(0.00)	8 (1.26)	0 (0)		8 (0.42)	6 (0.32)

Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs + systemic antivirals; non-systemic antimicrobials are excluded.

Data Sources: Antimicrobial DDD and Costs (PharmNet), C difficile (Infection Control Dashboards).

Historical antimicrobial usage and cost data updated due to the discovery that selected added drug dosages (Fluconazole 400mg/200ml bag, Pip-Tazo 13.5gm vial, Daptomycin 500mg vial) were not included in the report. Data have been revised to include Fluconazole starting August 2013, Pip-Tazo January 2015, and Daptomycin, November 2015.



Toronto General Hospital: General Internal Medicine

The FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) increased ([†]) by 37.7% compared to YTD last year.
- o Antimicrobial costs per patient day increased (↑) by 94.4% compared to YTD last year for TGH.
- Antibacterial costs per patient day increased (↑) by 47.5% compared to YTD last year.
- Antifungal costs per patient day increased (1) by 214.6% compared to YTD last year.
 NB: Usage data calculated for patients admitted to primary GIM units at TGH.

Toronto General Hospital: General Internal Medicine Antimicrobial Consumption and Costs Per Patient Day

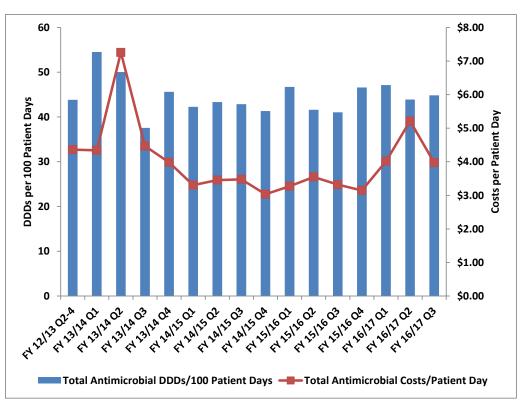
To view Appendix 2: General Internal Medicine FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 patient days) and Expenditures, please click here.

Table 14: Toronto General Hospital: General Internal Medicine

Indicators	FY 12/13						FY16/17 Performanc	e		YTD of Previous	
	(Q2-4)	FY 13/14	FY 14/15	FY 15/16	Q1	Q2	Q3	Q4	YTD	Year	
Antimicrobial Usage and Costs											
Total Antimicrobial DDDs/100 Patient Days	87	83	83	63	88	89	104		94	66	
Systemic Antibacterial DDDs/100 Patient Days	77	70	73	55	71	75	83		76	58	
Systemic Antifungal DDDs/100 Patient Days	11	13	10	8	17	14	21		17	9	
Total Antimicrobial Costs	\$279,644	\$471,342	\$352,036	\$313,464	\$83,645	\$91,225	\$153,219		\$328,089	\$232,324	
Total Antimicrobial Costs/Patient Day	\$14.10	\$18.05	\$13.30	\$8.48	\$11.99	\$12.96	\$22.26		\$15.70	\$8.31	
Systemic Antibacterial Costs	\$171,817	\$225,491	\$221,389	\$202,012	\$48,975	\$58,426	\$71,801		\$179,202	\$158,478	
Systemic Antibacterial Costs/Patient Day	\$8.67	\$8.64	\$8.36	\$5.47	\$7.02	\$8.30	\$10.43		\$8.57	\$5.67	
Systemic Antifungal Costs	\$107,827	\$245,851	\$130,647	\$111,452	\$34,671	\$32,799	\$81,418		\$148,887	\$73,846	
Systemic Antifungal Costs/Patient Day	\$5.44	\$9.42	\$4.93	\$3.02	\$4.97	\$4.66	\$11.83		\$7.12	\$2.64	
Patient Care Outcomes											
Hospital-Acquired C. difficile Cases (rate per 1,000 patient days)	15 (0.76)	16 (0.61)	15 (0.68)	14 (0.6)	1 (0.14)	1 (0.14)	2 (0.29)		4 (0.2)	6 (0.21)	

Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs; non-systemic antimicrobials and antivirals are excluded.

Data Sources: Antimicrobial DDD and Costs (Centricity). *An error in DDD calculation for Pip-tazo was detected in Q3 2013; all historical data prior to this was rerun, resulting in minor changes to antibacterial DDDs.



Toronto Western Hospital: General Internal Medicine

The FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) increased ([†]) by 2.6% compared to YTD last year.
- $\circ~$ Antimicrobial costs per patient day increased (†) by 28.8% compared to YTD last year.
- \circ $\;$ Antibacterial costs per patient day increased (†) by 1.4% compared to YTD last year.
- Antifungal costs per patient day increased ([†]) by 2,577.1% compared to YTD last year*.

NB: Usage data calculated for patients admitted to primary GIM units at TWH.

Toronto Western Hospital: General Internal Medicine Antimicrobial Consumption and Costs Per Patient Day

To view Appendix 2: General Internal Medicine FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 patient days) and Expenditures, please click here.

Table 15: Toronto Western Hospital: General Internal Medicine

Indicators										
multators	FY 12/13 (Q2-4)	FY 13/14	FY 14/15	FY 15/16	Q1	Q2	Q3	Q4	YTD	YTD of Previous Year
Antimicrobial Usage and Costs										
Total Antimicrobial DDDs/100 Patient Days	44	47	42	47	47	44	45		45	43
Systemic Antibacterial DDDs/100 Patient Days	41	44	40	42	44	41	41		42	41
Systemic Antifungal DDDs/100 Patient Days	3	3	3	6	3	3	4		3	2
Total Antimicrobial Costs	\$74,737	\$115,919	\$110,889	\$108,612	\$32,853	\$41,568	\$33,084		\$107,505	\$82,430
Total Antimicrobial Costs/Patient Day	\$4.36	\$5.01	\$3.32	\$3.32	\$4.01	\$5.21	\$3.98		\$4.39	\$3.38
Systemic Antibacterial Costs	\$60,999	\$93,779	\$103,080	\$105,744	\$26,872	\$25,503	\$31,373		\$83,748	\$80,608
Systemic Antibacterial Costs/Patient Day	\$3.56	\$4.05	\$3.09	\$3.23	\$3.28	\$3.20	\$3.77		\$3.42	\$3.31
Systemic Antifungal Costs	\$13,738	\$22,140	\$7,810	\$2,868	\$5,981	\$16,064	\$1,711		\$23,756	\$1,822
Systemic Antifungal Costs/Patient Day	\$0.80	\$0.96	\$0.23	\$0.09	\$0.73	\$2.01	\$0.21		\$0.97	\$0.07
Patient Care Outcomes					•					
Hospital-Acquired C. difficile Cases (rate per 1,000 patient days)	7 (0.41)	14 (0.6)	11 (0.33)	7 (0.21)	1 (0.12)	5 (0.63)	2 (0.24)		8 (0.33)	5 (0.21)

Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs; non-systemic antimicrobials and antivirals are excluded.

Data Sources: Antimicrobial DDD and Costs (Centricity). *An error in DDD calculation for Pip-tazo was detected in Q3 2013; all historical data prior to this was rerun, resulting in minor changes to antibacterial DDDs.

IMMUNOCOMPROMISED HOST

Princess Margaret Cancer Centre: Leukemia Service

The FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) decreased (↓) by 4.3% compared to YTD last year.
- o Antimicrobial costs per patient day decreased (↓) by 18.7% compared to YTD last year.
- Antibacterial costs per patient day decreased (1) by 26.4% compared to YTD last year.
- Antifungal costs per patient day decreased (↓) by 15.7% compared to YTD last year.
- Due to an increase in allo BMT patients being placed on the leukemia units, starting on September 12, 2016, Dr. Uday Deotare (and the allo BMT team) are at ASP rounds every Monday.

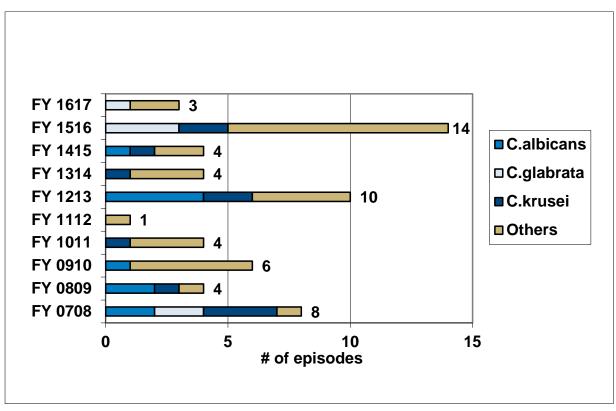
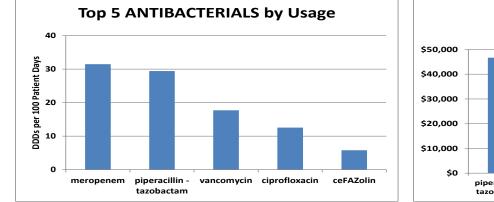
Princess Margaret Cancer Centre: Leukemia Service Antimicrobial Consumption and Costs Per Patient Day

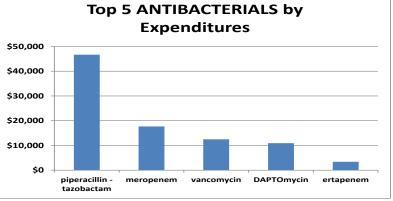
Table 16: Princess Margaret Cancer Centre: Leukemia Service

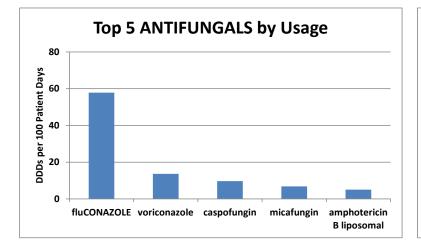
Indicators										YTD of			
	FY 09/10	FY 10/11	FY 11/12	FY 12/13	FY 13/14	FY 14/15	FY 15/16	Q1	Q2	Q3	Q4	YTD	Previous Year
Antimicrobial Usage and Costs													
Total Antimicrobial DDDs/100 Patient Days	295	270	239	250	255	244	239	229	231	232		231	240
Systemic Antibacterial DDDs/100 Patient Days	191	163	134	146	138	136	138	134	133	132		133	138
Systemic Antifungal DDDs/100 Patient Days	104	107	105	104	117	108	101	95	98	100		98	102
Total Antimicrobial Costs	\$1,768,317	\$1,641,331	\$1,310,857	\$1,695,539	\$1,534,499	\$1,412,805	\$1,479,103	\$322,206	\$358,666	\$388,880		\$1,069,752	\$1,119,046
Total Antimicrobial Costs/Patient Day	\$167.12	\$154.32	\$115.13	\$128.91	\$117.10	\$96.46	\$96.98	\$81.99	\$89.71	\$93.82		\$88.61	\$99.08
Systemic Antibacterial Costs	\$659,034	\$609,747	\$663,175	\$422,438	\$485,263	\$471,597	\$403,399	\$88,244	\$86,349	\$103,803		\$278,395	\$314,339
Systemic Antibacterial Costs/Patient Day	\$62.28	\$57.33	\$58.24	\$45.85	\$37.03	\$32.20	\$26.45	\$22.45	\$21.60	\$25.04		\$23.06	\$27.83
Systemic Antifungal Costs	\$1,109,283	\$1,031,584	\$647,637	\$1,092,448	\$1,049,236	\$941,208	\$1,075,705	\$233,962	\$272,317	\$285,078		\$791,356	\$804,707
Systemic Antifungal Costs/Patient Day	\$104.84	\$96.99	\$56.88	\$83.06	\$80.07	\$64.26	\$70.53	\$59.53	\$68.11	\$68.78		\$65.55	\$71.25
Patient Care Outcomes													•
Hospital-Acquired C. difficile Cases (rate per 1,000 patient days)	6 (0.56)	7 (0.65)	14 (1.17)	5 (0.51)	11 (0.84)	13 (0.89)	14 (0.92)	3 (0.76)	4 (1.00)	3 (0.72)		10 (0.83)	11 (0.97)

Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs; non-systemic antimicrobials and antivirals are excluded. Data Sources: Antimicrobial DDD and Costs (Centricity). *An error in DDD calculation for Pip-tazo was detected in Q3 2013; all historical data prior to this was rerun, resulting in minor changes to antibacterial DDDs.

Table 17: Yeast Species Isolated in Blood – Princess Margaret Cancer Centre:Leukemia Service





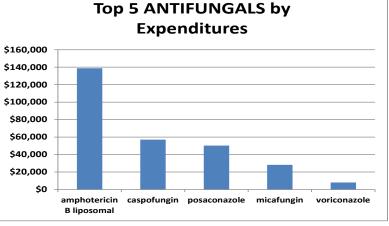
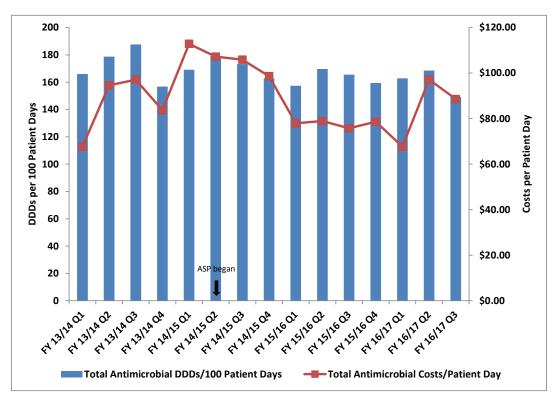


Table 18: Princess Margaret Cancer Centre: Leukemia FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 patient days) and Expenditures

Q3 REPORT | FISCAL YEAR 2016 | 2017

Page 35 of 48

Mount Sinai Hospital Sinai Health System Joseph & Wolf Lebovic Health Complex



Princess Margaret Cancer Centre: Allogeneic Bone Marrow Transplant

The FY 16/17 Q3 summary includes:

- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) decreased (↓) by 1.4% compared to YTD last year.
- Antimicrobial costs per patient day increased (\uparrow) by 8.1% compared to YTD last year.
- Antibacterial costs per patient day decreased (\downarrow) by 1.6% compared to YTD last year.
- \circ Antifungal costs per patient day increased (†) by 9.8% compared to YTD last year.

Princess Margaret Cancer Centre: Allogeneic Bone Marrow Transplant Antimicrobial Consumption and Costs Per Patient Day

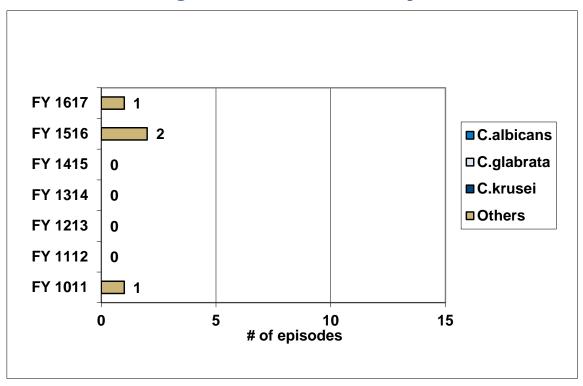


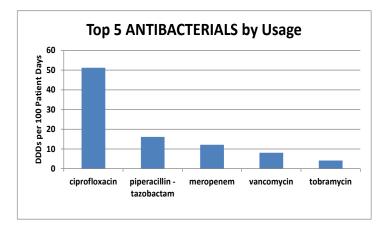
Table 19: Yeast Species Isolated in Blood – Princess Margaret Cancer Centre:Allogeneic Bone Marrow Transplant

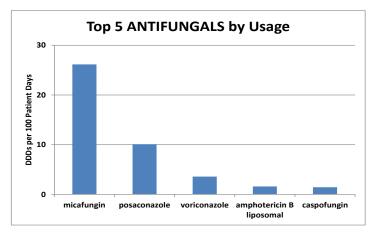
Table 20: Princess Margaret Cancer Centre: Allogeneic Bone MarrowTransplant

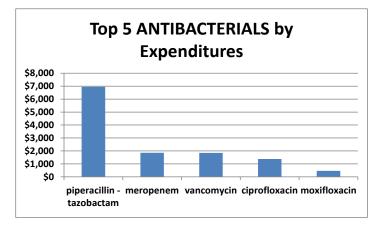
Indicators				FY16/17 Performance					
	FY 13/14	FY 14/15	FY 15/16	Q1	Q2	Q3	Q4	YTD	YTD of Previous Yea
Antimicrobial Usage and Costs									-
Total Antimicrobial DDDs/100 Patient Days	172	171	163	163	169	149		160	164
Systemic Antibacterial DDDs/100 Patient Days	114	104	107	121	115	106		114	107
Systemic Antifungal DDDs/100 Patient Days	59	67	56	42	54	43		46	57
Total Antimicrobial Costs	\$416,614	\$512,300	\$381,633	\$82,396	\$117,181	\$100,461		\$300,037	\$286,600
Total Antimicrobial Costs/Patient Day	\$85.65	\$106.13	\$77.62	\$67.70	\$97.16	\$88.59		\$84.35	\$77.27
Systemic Antibacterial Costs	\$75,219	\$78,038	\$60,088	\$15,066	\$12,535	\$13,323		\$40,924	\$42,477
Systemic Antibacterial Costs/Patient Day	\$15.46	\$16.17	\$12.22	\$12.38	\$10.39	\$11.75		\$11.51	\$11.45
Systemic Antifungal Costs	\$341,395	\$434,261	\$321,545	\$67,330	\$104,646	\$87,138		\$259,114	\$244,124
Systemic Antifungal Costs/Patient Day	\$70.19	\$89.97	\$65.39	\$55.32	\$86.77	\$76.84		\$72.85	\$65.82
Patient Care Outcomes									
Hospital-Acquired C. difficile Cases (rate per 1,000 patient days)	4 (0.82)	12 (2.49)	7 (1.42)	2 (1.64)	2 (1.66)	4 (3.53)		8 (2.25)	7 (1.89)

Total Antimicrobial DDDs is the sum of systemic antibacterial DDDs + systemic antifungal DDDs; non-systemic antimicrobials and antivirals are excluded.

Data Sources: Antimicrobial DDD and Costs (Centricity). *An error in DDD calculation for Pip-tazo was detected in Q3 2013; all historical data prior to this was rerun, resulting in minor changes to antibacterial DDDs.







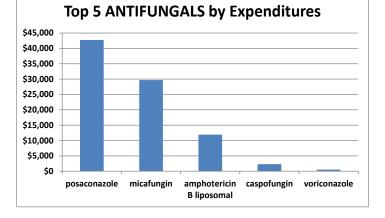
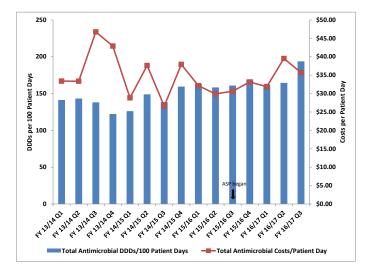


Table 21: Princess Margaret Cancer Centre: Allogeneic Bone Marrow Transplant 16/17 Q3 Top 5Antimicrobials by Usage (DDDs per 100 patient days) and Expenditures

Q3 REPORT | FISCAL YEAR 2016 | 2017

Page 38 of 48

Sinai Health System Joseph & Wolf Lebovic Health Complex



Toronto General Hospital: Multi-Organ Transplant Program (MOTP)

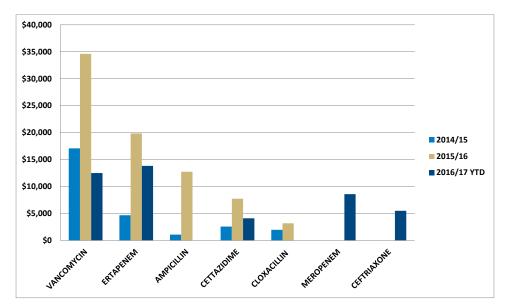
The FY 16/17 Q3 summary includes:

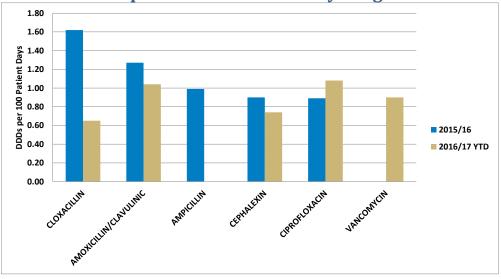
- Antimicrobial consumption (using defined daily doses (DDDs) per 100 patient days) increased (↑) by 6.8% compared to YTD last year.
- \circ Antimicrobial costs per patient day increased (\uparrow) by 15.2% compared to YTD last year.
- \circ Antibacterial costs per patient day increased (†) by 1.1% compared to YTD last year.
- \circ Antifungal costs per patient day increased (\uparrow) by 32.2% compared to YTD last year.

Toronto General Hospital: Multi-Organ Transplant Program (MOTP) Antimicrobial Consumption and Costs Per Patient Day

Table 22: Toronto General Hospital: Multi-Organ Transplant Program (MOTP)

Indicators				FY16/17 Performance					
	FY 13/14	FY 14/15	FY 15/16	Q1	Q2	Q3	Q4	YTD	YTD of Previous Year
Antimicrobial Usage and Costs									-
Total Antimicrobial DDDs/100 Patient Days	136	143	211	162	165	194		172	161
Systemic Antibacterial DDDs/100 Patient Days	93	98	112	109	116	131		118	114
Systemic Antifungal DDDs/100 Patient Days	43	45	99	53	49	63		54	47
Total Antimicrobial Costs	\$837,263	\$725,411	\$709,892	\$221,447	\$282,753	\$201,881		\$706,081	\$520,300
Total Antimicrobial Costs/Patient Day	\$39.16	\$32.69	\$31.47	\$31.88	\$39.51	\$35.71		\$35.74	\$30.90
Systemic Antibacterial Costs	\$327,831	\$379,748	\$342,941	\$110,803	\$123,064	\$106,005		\$339,873	\$268,537
Systemic Antibacterial Costs/Patient Day	\$15.33	\$17.11	\$15.20	\$15.95	\$17.20	\$18.75		\$17.20	\$15.95
Systemic Antifungal Costs	\$509,433	\$345,664	\$366,951	\$110,644	\$159,689	\$95,875		\$366,208	\$251,764
Systemic Antifungal Costs/Patient Day	\$23.82	\$15.58	\$16.26	\$15.93	\$22.32	\$16.96		\$18.54	\$14.95
Patient Care Outcomes									
Hospital-Acquired C. Difficile Cases (rate per 1,000 patient days)	14 (0.65)	18 (0.81)	11 (0.49)	4 (0.58)	6 (0.84)	4 (0.71)		14 (0.71)	8 (0.48)




BRIDGEPOINT HEALTH

Bridgepoint Health: Hospital-Wide

Bridgepoint Health: Hospital-Wide Top 5 ANTIBACTERIALS by Expenditures

Bridgepoint Health: Hospital-Wide Top 5 ANTIBACTERIALS by Usage

Bridgepoint Health: Urinary Tract Infection (UTI) Audit

The Antimicrobial Stewardship Program – Bridgepoint Subcommittee initiated a UTI audit with an aim to decrease inappropriate utilization of antibiotics. The UTI audit was designed to determine if antimicrobials were used appropriately post-intervention (CME and guidelines were presented to physicians and education to nurses) for patients with positive urine cultures who have or have not met surveillance criteria for a UTI. One month (May 1 to 31, 2016) of collected data was analyzed and compared to data collected in 2014. Eighty-four of the urine culture reports on 64 patients were included in the audit.

Recent analysis of the data indicates no significant change has been observed post intervention. The results of this audit will initiate continuing steps to support nursing and physician education around UTIs and the appropriate interpretation of urine cultures and utilization of antibiotics.

Urinary Tract Infection Audit Report

	August-December 2014	May 2016
Cultures	167	50
% not meeting surveillance criteria	59% (98/167)	62% (31/50)
% of above receiving antibiotics	55% (53/98)	55% (17/31)
% organism resistant to antibiotics ordered	5.6% (3/53)	29% (5/17)

BEST PRACTICE GUIDELINES AND ALGORITHMS

- Dr. Shahid Husain and Miranda So have completed the Draft ASP MOT Common Infections Management Guidelines for Solid Organ Transplant Patients. The guidelines will undergo consultative reviews by content experts in MOT and Transplant Infectious Diseases in the coming months.
- Dr. Shahid Husain and Miranda So began prospective audit and feedback rounds for the MOT units in November 2015 after consulting key stakeholders on their plan to implement antimicrobial stewardship interventions. Nurse practitioners, clinical pharmacists, transplant infectious diseases fellows, and kidney transplant fellows are active participants at ASP rounds. Participants reported ASP rounds enhance their knowledge and decision-making skills in antimicrobial use.
- The ASP-Allogeneic Bone Marrow Transplant Working Group was formed to update the antimicrobial prophylaxis guideline for allogeneic bone marrow transplant recipients, with support from Judy Costello, Dr. Andre Schuh, and Dr. Hans Messner. The working group will continue to meet to address any update as needed moving forward.
- Miranda So is the recipient of the Canadian Society of Hospital Pharmacists Ontario Branch Information Technology Award for the interactive High-Risk Febrile Neutropenia Protocol and the Solid Tumor Febrile Neutropenia Protocol.
- Clinical summaries continue to be available on the ASP website and on mobile device web browsers for a series of common and important conditions. Whiteboard animation videos continue to be available on our program's YouTube channel.
- The ASP collaborated with multiple key stakeholders across MSH and UHN on standardizing care related to the diagnosis and management of patients with Clostridium Difficile Infection (CDI). The algorithm was launched and involved extensive consultation, development, and revision with interdisciplinary stakeholders. An e-learning module was developed, as well as electronic order sets to support the algorithm. The CDI algorithm was reformatted based on clinician and project stakeholders' feedback and can be found here on our ASP website. The revised formatting is based on Human Factors Engineering and will be easier to navigate and print for frontline clinicians.

RESEARCH

The following articles were published or accepted for publication in peer reviewed medical journals:

- Bai A, Showler A, Burry L, Steinberg M, Tomlinson G, Bell CM, Morris AM. Clinical prediction rules in Staphylococcus aureus bacteremia demonstrates the usefulness of reporting likelihood ratios in infectious diseases. *Eur J Clin Microbiol Infect Dis.* 2016 Sept. 35(9): 1393–1398
- <u>Letter to the Editor</u>: Bai A, Showler A, Burry L, Steinberg M, Tomlinson G, Bell CM, Morris AM.
 Letter to the Editor Clinicians should use likelihood ratios when comparing tests. *Eur J Clin Microbiol* Infect Dis (2016). doi:10.1007/s10096-016-2801-y
- Vallipuram J, Dhalla S, Bell CM, Dresser L, Han H, Husain S, Minden MD, Paul NS, So M, Steinberg M, Vallipuram M, Wong G, Morris AM. Chest CT Scans are Frequently Abnormal in Asymptomatic Patients with Newly Diagnosed Acute Myeloid Leukemia. *Leuk Lymphoma*. 2017 Jan. Vol 58 (4) 834-841
- Hughes JS, Hurford A, Finley RL, Patrick DM, Wu J, Morris AM. How to measure the impacts of antibiotic resistance and antibiotic development on empiric therapy: new composite indices. *BMJ Open* 2016;6:e012040 doi:10.1136/bmjopen-2016-01204.
- Hughes JS, Huo X, Falk L, Hurford A, Lan K, Coburn B, Morris A, Wu J. Benefits and unintended consequences of antimicrobial de-escalation: Implications for stewardship programs. *PLoS ONE* 12(2): e0171218. doi:10.1371/journal.pone. 0171218
- Sasson G, Bai AD, Showler A, Burry L, Steinberg M, Ricciuto DR, Fernandes T, Chiu A, Raybardhan S, Science M, Fernando E, Morris AM, Bell CM. Staphylococcus aureus bacteremia in immunosuppressed patients: a multicenter, retrospective cohort study. *Eur J Clin Microbiol Infect Dis.* 2017; DOI 10.1007/s10096-017-2914-y
- Bai A, Steinberg M, Showler A, Burry L, Bhatia RS, Tomlinson GA, Bell CM, Morris AM.
 Diagnostic Accuracy of Transthoracic Echocardiography For Infective Endocarditis Findings
 Using Transesophageal Echocardiography as the Reference Standard: A Meta-Analysis. J Am Soc Echocardiogr. 2017 March [in press]

<u>Op-Ed</u>

 Andrew Morris and Bill Tholl. It's time for Trudeau to join the battle against 'superbugs'. Ottawa Citizen, Sept. 20, 2016

There are currently an additional five manuscripts that have been submitted to medical journals and are undergoing peer review.

Abstracts

The following abstracts were presented at an international meeting by ASP team members:

 Valbuena V, Bai A, Showler A, Burry L, Steinberg M, Bell C, Morris AM. Clinical Outcomes Of Staphylococcus aureus Bacteremia Following Introduction of Mandatory Infectious Disease Specialist Consultation: A Retrospective 12-month Study. Poster presentation at ID Week 2016, Oct. 26-30, 2016. New Orleans, LA.

 Silverberg S, Jamal A, Zannella V, Damji A, Lee JA, Morris AM. The Students for Antimicrobial Stewardship Society: A Novel, Grass-roots Educational Approach to Growing a Culture of Antimicrobial Stewardship. Poster presentation at ID Week 2016, Oct. 26-30, 2016. New Orleans, LA.

Grants Awarded

 AHSC AFP Innovation Fund: The development and testing of a scaling strategy for a Community-Based Primary Care Antimicrobial Stewardship Program utilizing an innovative University of Toronto primary care testing platform: the UTOPIAN practice based research network. Principal Investigators: Warren McIsaac and Andrew Morris

Research Studies

The following grant-funded studies are progressing according to timelines:

- ASP-SUSTAIN: Building Capacity to Improve and Sustain Antimicrobial Stewardship Programs in ICUs. Canadian Institutes of Health Research, Knowledge to Action. Principal Investigators: Lianne Jeffs, Andrew Morris. Co-investigators: Chaim Bell, Madelyn Law, Jonathan Mitchell, Susan Straus
- FRAMING-LTC: <u>Frailty and Recognizing Appropriate Medications IN Geriatrics and Long-Term</u> <u>Care.</u> Technology Evaluation in the Elderly Network (CFN). Principal Investigator: Andrew Morris. Co-Investigators: Chaim Bell, Susan Bronskill, Colleen Maxwell, Lianne Jeffs
- Designing an Effective Outpatient Antimicrobial Stewardship Program to Reduce Unnecessary Antibiotic Use in Primary Care using a Mixed-Methods Collaborative Model. AHSC AFP Innovation Fund. Principal Investigators: Warren McIsaac, Andrew Morris. Co-investigators: Chaim Bell, Lianne Jeffs, Jeff Bloom, David Tannenbaum
- Development of an Antimicrobial Resistance Diversity Index (ARDI) to guide initiatives and investment in public health, antimicrobial stewardship and infection control. CIHR NSERC Grant. Principal Investigators: Jainhong Wu, Andrew Morris. Co-investigators: Troy Day, Amy Hurford, Allison McGeer, David Patrick, Gerry Wright

In addition to these funded projects, multiple unfunded research projects continue, led by various members of the SHS-UHN ASP team.

EDUCATION

- As part of our General Internal Medicine (GIM) initiative, the ASP team has been providing ongoing education and support to GIM Pharmacists at both MSH and UHN. The ASP team provides education to physicians and medical trainees through several means, including ASP/ID case-based noon rounds, ASP pocket cards for medical trainees, and a mobile ASP web application (m.antimicrobialstewardship.com) to provide efficient access to resources.
- Twice a month the ASP team meets with all Nurse Practitioners from the Malignant Hematology program for case rounds.

 The Leslie Dan Faculty of Pharmacy at the University of Toronto is the first institution to offer an elective in Antimicrobial Stewardship in the Entry-to-Practice Doctor of Pharmacy Curriculum. Miranda So (ASP Pharmacist) is the course coordinator, with contributions from other ASP team members.

PROVINCIAL ROLE

Expert Consultation

The ASP continues to provide expert advice and consultation to various hospitals throughout the province. We've assisted over 30 hospitals of various sizes and needs from large academic hospitals to community hospitals in rural areas.

Our team has partnered with Public Health Ontario in hosting an Ontario Antimicrobial Stewardship Roundtable. This roundtable meeting included a cross-section of experts in antimicrobial stewardship, including primary care, long-term care, acute care, and perspectives from the Assistant Deputy Minister, Health Systems Quality and Funding, and Strategy and Policy Advisor and Infectious Disease Policy and Programs Sections.

The ASP team has also been providing expert guidance to PSASS (Pharmacy Students for Antimicrobial Stewardship Society) and SASS (Students for Antimicrobial Stewardship Society) to create awareness and promote antimicrobial stewardship principles to the next generation of prescribers. SASS is now a national initiative, with chapters in eight medical schools and one pharmacy school.

NATIONAL AND INTERNATIONAL ROLE

HealthCareCAN, Public Health Agency of Canada, and the National Collaborating Centre for Infectious Diseases

As previously reported, the SHS-UHN ASP has been working closely with HealthCareCAN, the National Collaborating Centre for Infectious Diseases (NCCID), and the Public Health Agency of Canada (PHAC) to inform our national health leaders on Antimicrobial Stewardship and Resistance. Members of our ASP team led the Pan-Canadian Action Round Table with 50 experts and champions of change on AMR last June. The outcome of the Pan-Canadian Action Round Table led to the development of a National Action Plan on antimicrobial stewardship, with a focus on the human health context as part of a "One Health" approach. The Action Plan was circulated for review and comments by key influencers and stakeholders and was finalized in Q3. A follow-up meeting to this National Action Round Table also took place in Q3, where experts in AMR and AMS reconvened. This expert group (the AMS Canada Steering Committee), which includes SHS-UHN ASP members (Dr. Andrew Morris and Yoshiko Nakamachi), identified and committed to three "table setting" activities in AMS that support a National Action Plan on AMR. Specifically, these three activities are as follows:

- 1. Developing an evaluation protocol to assess progress in national AMS efforts.
- 2. Modeling strategies for educating the public on AMR and AMS.
- 3. Developing and promoting national guidelines on antimicrobial use for primary care practitioners treating common infections.

Accreditation Canada

In Q3, we continued to partner with **Accreditation Canada** in the delivery of an **online ASP course** and a series of interactive group webinars.

HealthCareCAN CHA Learning

Our program has also partnered with CHA Learning, the professional development branch of HealthCareCAN, to develop materials for a course in change leadership in the healthcare setting.

Public Health Agency of Canada

Dr. Andrew Morris is an invited member of EAGAR (Expert Advisory Group on Antimicrobial Resistance), chaired by the Federal Chief Medical Officer of Health, Dr. Theresa Tam (interim).

Antimicrobial Resistance (AMR) Federal, Provincial, Territorial (F/P/T) Task Group

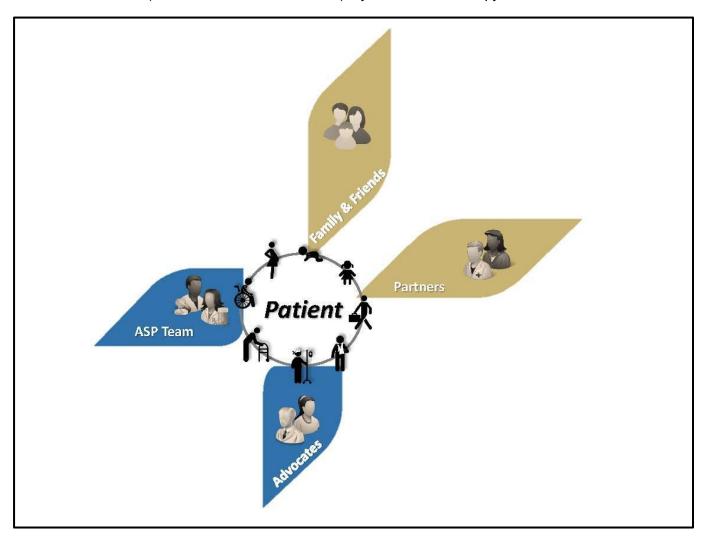
Yoshiko Nakamachi is an official member of the AMR Stewardship Task Group, which provides F/P/T advice and recommendations on priority human health activities in health care, community, agriculture settings.

Association of Medical Microbiology and Infectious Diseases Canada

Dr. Andrew Morris is the chair of AMMI Canada's Antimicrobial Stewardship and Resistance Committee. Dr. Linda Dresser is a pharmacist member of this committee.

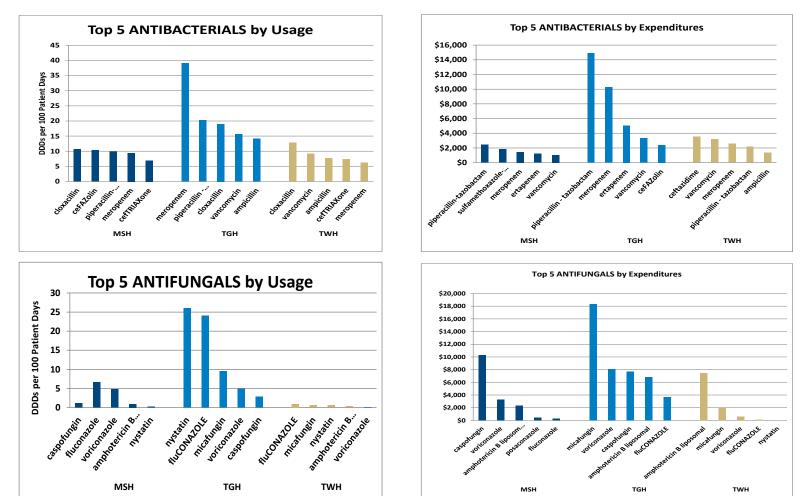
ASP Rotations at SHS and UHN

The SHS-UHN ASP continues to provide ASP rotations for residents and fellows from across the country and internationally.

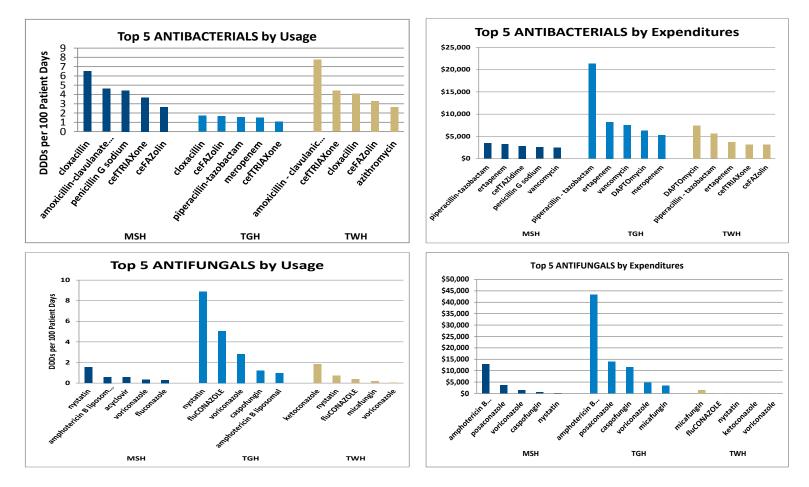


STRATEGIC PLANNING

The ASP team developed the SHS-UHN ASP Strategic Plan 2016-2019. Please contact Yoshiko Nakamachi (Yoshiko.Nakamachi@uhn.ca) if you would like a copy.



Appendix 1: FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 Patient Days) and Expenditures by ICU Site


Page 47 of 48

Appendix 2: General Internal Medicine FY 16/17 Q3 Top 5 Antimicrobials by Usage (DDDs per 100 patient days) and Expenditures

Mount Sinai Hospital Sinai Health System Joseph & Wolf Lebovic Health Complex

